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Abstract

An analysis is presented for the generation of shear-layer instability waves by lo-
calized sources close to and far from the trailing edge. The frequency is assumed low
enough that the shear layer can be represented by a vortex sheet, and the solution is
developed using the Wiener-Hopf technique. Actuators (sources) on both surfaces of
the splitter plate, and in the quiescent fluid just outside the shear layer, are considered.
Results are presented for both subsonic and supersonic Mach numbers. Actuators on
the stream side of the splitter place are found to be more effective in generating shear-
layer instability waves than actuators on the side adjacent to the quiescent fluid. The
receptivity is highest for actuators located very near the trailing edge. For upstream
actuators located on or near the splitter plate surface, the receptivity level decreases al-
gebraically with distance from the trailing edge. In contrast, for actuators located just
outside the shear layer downstream of the trailing edge, the receptivity level decreases
exponentially with distance from the trailing edge.

1 Introduction

Through the excitation of instability waves in jet shear layers, important features of jet flows

may be controlled. These include thrust vectoring, modifications to jet mixing, and the
suppression of noise and infrared signatures. In order to develop optimum approaches for
the excitation of shear-layer instability waves in jets, the receptivity mechanisms by which
these waves are generated must be understood, and the relative effectiveness of different



excitation methods must be quantified. This report presents a theoretical study of shear-layer
receptivity processes of relevance to jet control. Related experimental and computational
studies developed under AFOSR contract F49620-94-C-0029 axe discussed in Parekh et al
[1] and Cain [2], respectively.

To produce receptivity, external disturbances must induce motion within the shear layer
that matches the frequency-wavelength combination of the instability wave. For shear layers,
the trailing edge (or nozzle lip) often plays an important role in the transfer of energy from
the spatial spectrum of the external disturbance to that of the instability wave field. Thus,
it is essential that the influence of the trailing edge be included in the theoretical analyses.
The theoretical formulations then take the form of two-part boundary-value problems, the
no-penetration condition being applicable on the nozzle surface (x < 0), while continuity of
pressure and continuity of particle displacement conditions apply downstream of the nozzle
lip (x > 0).

The parameter space throughout which jet control is desirable is quite large, containing
a wide range of Mach numbers and temperature ratios. In order to obtain a global picture
of shear layer receptivity behavior throughout this parameter space, the development of a
simplified model is desirable. Since the boundary layer at a nozzle exit is usually quite thin,
and low-frequency instability waves have the most potential for downstream growth, a focus
on the case of thin shear layers appears profitable. In this report we assume that the Strouhal
number S = wS/U is small enough that the vortex-sheet approximation for the shear layer
is applicable. Here w is the frequency of the instability wave, 6 is a measure of the thickness
of the shear layer, and U is the speed of the jet.

Previous theoretical studies of unsteady trailing-edge interactions utilizing the vortex-
sheet approximation were presented by Morgan [3], Munt [4] [5], and Cargill [6]. Morgan
considered an external point source in a supersonic flow, but focused on the scattering of the
acoustic field rather than the generation of an instability wave. Similarly, Munt and Cargill
focused on transmission of a sound wave out a circular jet pipe. The present report is focused
on instability wave generation. We develop a two-dimensional analysis which considers only
a single splitter plate, corresponding to a jet of semi-infinite width. A receptivity analysis
for a circular jet, with an acoustic source related to the screech problem, is presented in Pal
[7] and Bower and Pal [8].

In section 2, the theoretical model is formulated as a two-part mixed boundary-value
problem. In section 3, the Wiener-Hopf technique is utilized to obtain the solution to this
mixed boundary-value problem.. Receptivity Coefficients for a range of flow speeds (incom-
pressible, subsonic and supersonic) and actuator locations are presented in section 4.

2 Formulation

The basic length scale governing the dynamics of the receptivity process is the instability
wavelength A,. In the vicinity of the nozzle lip, the thickness 6 of the jet shear layer is
generally quite thin compared to A,, corresponding to the limit S = w6/U < 1. In this
limit, the analysis of the instability wave generation can be simplified by replacing the finite-
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thickness shear layer by a vortex sheet. (Formally, the vortex-sheet model is obtained by
applying a low-frequency approximation to the equations governing a finite-thickness shear
layer.) Often, the nozzle lip is also thin compared to the instability wavelength. In this
situation, the nozzle surface can be approximated by a rigid sheet of zero thickness.

In the vicinity of the nozzle lip, the amplitudes of the impinging sound field and the gen-
erated instability wave are usually quite small compared to the mean flow speed. Therefore,
the unsteady motion can be analyzed as a small perturbation to the mean flow field. In order
to further simplify the modeling of the receptivity process, we introduce a few additional
assumptions. First, we consider a two-dimensional nozzle whose width is large compared
to the instability wavelength. The receptivity of the shear layers on the two boundaries of
the jet can then be analyzed separately. Second, we assume that the nozzle surface extends
upstream at constant area for a distance of several wavelengths. In this situation, the nozzle
surface can be approximated by a rigid, zero-thickness sheet that extends to upstream infin-
ity. Finally, for the case of a supersonic jet we assume that the jet is perfectly expanded, so
that the jet flow leaves the nozzle without undergoing an expansion or compression process.
The above assumptions may seem somewhat restrictive, but are motivated by the desire for
a relatively simple theory which is applicable to a wide range of parameter space. Once a
basic theory is in place, various refinements to the modeling could be explored.

Concentrating on a single shear layer of the jet, the nozzle surface is represented by a
rigid, semi-infinite sheet, extending along the negative x' axis from the origin to negative
infinity, as illustrated in figure 1. The nozzle lip (or trailing edge) is located at the origin.
The mean flow in the jet is assumed to be uniform upstream and downstream of the nozzle
exit. In the present work, we assume that the jet exhausts into a quiescent medium. The
mean flow is then given by

U0 0, Y'>
U e '< (1)

the regions y < 0 and y' > 0 corresponding to the jet stream and the surrounding quiescent
medium, respectively. Downstream of the trailing edge, the jet boundary (&/ = 0) takes the
form of a vortex sheet. The mean pressure po is the same inside and outside the jet, while
the temperature To- and density Po- inside the jet may be different than the corresponding
values To+ and po+ outside the jet. The sound speeds co- and co+ are given by the perfect
gas formula c = /yp/p, where -y is the ratio of specific heats. The relation po-cg_ = P0+c-+
follows as a consequence of the pressure Po being the same inside and outside the jet. The
base flow Mach number within the jet is M_ = U/co_. It proves convenient to also introduce
a Mach number, M+ = U/co+, based on the speed of sound outside the jet. However, it
must be remembered that the base flow vanishes outside the jet; M+ is simply a parameter
that is introduced in order to express the equations in a convenient form.

Linearizing the governing equations about the base state (1), the flow perturbations
(p-, p-, u-) within the jet satisfy the equations

Dop_ + poc2V .u_ = 0, (2a)

Dt'
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Dou_

Po- Dtu _Vp, (2b)

P - =(2c)
C0-

where u- = (u-, v-), t' is time, and Do/Dt' = 8/at' + U8/Olx is the substantial derivative
with respect to the mean flow. The flow perturbations (P+, p+, u+) outside the jet satisfy
(2) with U set to zero and po-, co- replaced by Po+, co+.

On the nozzle surface (x' < 0), the perturbation flow satisfies the no-penetration bound-
ary condition

v+[,___ =0. (3)

Downstream of the trailing edge (z' > 0), the perturbation flow satisfies two matching
conditions across the vortex sheet that forms the boundary of the jet. These matching
conditions are continuity of pressure,

P+I,=0 = P-IYI=0, (4)

and continuity of particle displacement,

Oh' Oh' uOh'
v+11,=0 = ale v-I ,=0 = ah; + U(5)

where he(e, t') is the displacement of the vortex sheet and linearization has been utilized to
transfer the conditions from the instantaneous position &/ = h(x, t') to the mean surface
S= 0±. The Sommerfeld radiation condition applies at infinity.

Since the base flow is irrotational outside of the vortex sheet, the flow perturbations can
be expressed in terms of velocity potentials, say 0+ and 0-. Setting u- = Vo-, (2b) can be
integrated to obtain

D00-
-= P t- Dt' (6)

Equations (2a) and (2b) can then be combined to yield the convected wave equation,

V 2_0 c 1 Do& 0 (7)
c8_Dt12

-

The corresponding flow perturbations outside the jet satisfy (7) with U set to zero and Po-,
co- replaced by Po0, Co+.

The next step in the analysis is to represent the field as the sum of an 'incident field',
due to an actuator or other source, and a 'scattered field', produced by the interaction of
the incident field with the shear layer and the trailing edge. For an actuator or source in the
ambient region (y' > 0), the function 0+(xI, /, t) is separated into incident and scattered
components, ¢,+(x', y, t') and 08+(x,, y, t'), while 0- (x, Y, t') contains only a scattered com-
ponent. We also consider the case of an actuator on the inside surface of the nozzle (y -* 0-).
For this case 0- (x, y/, t') is separated into incident and scattered components. We choose
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to illustrate the analysis for the case of a point source in the ambient region (V > 0). After
developing the analysis for this case, the differences that arise in the case of an actuator on
the internal surface of the nozzle will be discussed.

The solutions for 0- and 0+ are developed using a Fourier transform with respect to the
streamwise coordinate. However, since the boundary conditions in the region x' < 0 are dif-
ferent than those in the region x' > 0, a special technique is required. We have developed the
solutions using the Wiener-Hopf technique [9]. In the Wiener-Hopf technique, Fourier trans-
form methods are combined with analytic continuation in the complex wavenumber plane
to determine the solution. A transform method is particularly well suited for determination
of the (complex) amplitude of the instability wave, since the instability wave appears as a
pole of the solution in transform space. The amplitude of the instability wave is found by
evaluating the residue associated with this pole, a much simpler task than the full evaluation
of the inverse transform.

Solutions have been developed for incompressible, subsonic and supersonic flows. There
are significant differences in the physics of the unsteady flow for these three cases, which
are reflected in the structure of the singularities in the complex wavenumber plane. The
singularities for the incompressible, subsonic and supersonic cases are illustrated in figures
2a, 2b and 2c, respectively. Due to these differences in the singularity structure, differences in
the details of the Wiener-Hopf analysis arise. For the sake of illustration, we concentrate on
the supersonic flow case. After the analysis for this case has been developed, the differences
which arise for subsonic and incompressible flows will be discussed.

Thus, consider the case of a localized, time-harmonic volume source of dimensional
strength q' in the ambient region at position (xO, yb). The source is represented by in-
troducing an inhomogeneous term

q'(x - x')6(y' - z/) exp(-iwt'),

on the right-hand side of the wave equation (7) (with Po+, po- and U = 0) which 0+ (x, y)
satisfies.

With the assumptions that the splitter plate (or nozzle lip) extends to upstream infinity
and that both the splitter plate and shear layer are of infinitesimal thickness, the problem
does not contain a geometrical length scale. The hydrodynamic length scale U/w can there-
fore be used for nondimensionalization. Upon extraction of the harmonic time dependence,
the frequency then does not appear explicitly in the resulting equations, so that a single
(nondimensional) solution applies at all frequencies for which the vortex-sheet approxima-
tion is applicable.

Setting
t=wt', X- u Y- U (8)

and
+= qg+(x,y)eit, e- =g_(x,y)e-it, (9)
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the reduced potentials g+(x, y) and g- (x, y) satisfy the differential equations

x92 + P + Mg+ = 6(x - Xo)6(y - yo), (10a)

~~2S- 2g + M 1+ _ i g_=0. (10b)

On the nozzle surface (x < 0), the reduced potentials satisfy the homogeneous boundary
conditions

a = o, =g 0, (11)
f ly---O+ t Y-O

while for x > 0 the pressure and particle-displacement matching conditions across the vortex
sheet take the form

M+2 g+ I , = M!1+ (i -± ) g- 1, (12a)

(y+i+)--- (12b)

Finally, the modified potentials g+ (x, y) and g- (x, y) also satisfy the appropriate form of
the Sommerfeld radiation condition. In the following section, the Wiener-Hopf technique is
utilized to obtain the solutions for g+ and g.

3 Solution

In this section, we develop the solution for the case of a supersonic shear layer excited by a
time-harmonic source in the ambient field. Equations (10a - 12) for the reduced potential
functions g+ (x, y) and g- (x, y) form a mixed boundary-value problem, since the boundary
conditions (12) that apply on x > 0 are different than the conditions (11) that apply on x < 0.
Due to the presence of the mixed boundary conditions, the solution of (10a - 12) requires
a special technique. In this report, the solution is developed utilizing the Wiener-Hopf
technique [9]. In the Wiener-Hopf technique, Fourier transform methods are combined with
analytic continuation in the complex wavenumber plane in order to determine the solution. A
transform solution is particularly well suited for determination of the (complex) amplitude of
the instability wave, since the instability wave appears as a pole of the solution in transform
space. The amplitude of the instability wave is found by evaluating the residue associated
with this pole, a much simpler task than the full evaluation of the inverse transform.

The Fourier transform G(A, y) and its inverse are defined as

G(A, y) = j g(x, y) exp(i,\x)dx, g(x,y) = j G(A,y)exp(-iAx)dA. (13)
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Applying the transform to (lOa), solving the resulting ordinary differential equation in y
and noting that the solution must remain bounded as y -+ co, we obtain

G+ (A, y) = C+ (A) exp(-A+ (A)y) -2+(A) exp(iy - •t+(A) ly - yol), (14)

where
p,+(A) = ýA 2 - M+2. (15)

The first term in (14) is a complementary solution to the homogeneous equation (corre-
sponding to the scattered potential 0,+), while the second term is a particular solution
(corresponding to the incident field Oi-). The function A++(A) corresponds to the branch of
the square root that is real and positive as A --* +0o along the real A axis. In order to satisfy
the Sommerfeld radiation condition, the branch points of A+ at A = ±-M+ are assumed to
lie just above and below the real A axis, respectively, the inversion contour in (13) being the
real A axis. The branch cuts extending from ±M+ are illustrated in figure 2c.

Similarly, applying the transform to (10b) and noting that the solution must remain
bounded as y --+ -oo, we obtain the corresponding result

G(A,y) = C_(A) exp(j_(A)y), (16)

where

/_t- = (_A 2 - M! (1 + A) 2  (17)
-- -if3 (A- M 1 )(A- M 2 ),

and/3- M_ -1, the second form of /t (A) exposing the branch points at

M = M_ and M2 = M-1 (18)

The branch points at A = M1 and M2 lie just below the real A axis and the branch cuts
extend down into the lower half-plane, as illustrated in figure 2c. The difference in the
locations of the branch points and branch cuts for it- as compared to those for IL+ is related
to the lack of upstream influence in a supersonic stream. The function I.._ is real positive
for real values of A in the range M2 < A < M1 ; /.i- is negative imaginary for A > M1 and
positive imaginary for A < M2 .

Next consider the application of the Fourier transform (13) to the boundary conditions.
Since the boundary conditions are specified only on the half-ranges x > 0 and x < 0, while
the transform involves the full range -0o < x < 0o, we must introduce some half-known
functions in order to apply the transform. The pressure matching condition (12a) applies on
x > 0. Thus, we set

M.g+(XO)-M! (+i+)g_(x,O) = u(x), (19)
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where u(x) is a function that is half-known since u(x) = 0 for x > 0. Applying the transform
(13) over the full range -oo < x < 00, and utilizing (14) and (16), we obtain

M2C+(A) - M2 exp(ixo - t+(A)yo) _ M!(1 ± A)C_(A) = U-(A), (20)
2A+(A)

where U- (A) is the Fourier transform of u(x). The superscript (.)- on U(A) denotes that
this function is analytic in the lower half of the complex A-plane (Im[A] < 0), a property
which follows from the fact that u(x) = 0 for x > 0. In the Wiener-Hopf nomenclature, such
functions are called minus functions.

Next consider the particle-displacement matching condition (12b). This vortex-sheet
condition is obviously satisfied on x > 0, and it is also satisfied on x < 0 by virtue of the
hard-wall boundary condition (11). Thus, we can transform this condition on the full range
-oo < x < oo to obtain

(1± G+I +_ =0. (21)
(1y 4=O+ 1Y_=0-

Substituting in the expressions (14, 16), we obtain

(1 + A) [-/+(A)C+(A) - exp(iAxo - /L+(A)yo)] -I._(A)C_(A) = 0. (22)

Next, we combine (20) and (22) in a form that involves the transforms of two 'half-
known' functions. One of these is U-(A), the transform of u(x). To identify a function
that is analytic in the upper half plane, note that the disturbance cannot penetrate into the
region x < 0 within the supersonic jet. Thus 0 (x, 0) is zero for x < 0, and C. (A) is a
'plus' function. Now i_ (A) is also a plus function, since both branch cuts lie in the lower
half plane (see figure 2c). It proves convenient to choose d(x) = og_/Oyly,_o as the second
half-known function; its transform is

D+(A) = C. (A) (23)

where the superscript (0+ on D(A) denotes that this is a plus function, i.e., a function that
is analytic in the upper half of the complex A plane (Im[A] > 0). (Later, it will be seen that
d(x) contains an instability wave component which exhibits exponential growth as x -- 00,
requiring a slight modification to the definitions of the upper and lower halves of the complex
A plane.)

To apply the analytic continuation argument of the Wiener-Hopf technique, we require
a single equation in which the only unknown quantities are the two half-analytic functions,
U-(A) and D+(A). This is achieved by using (21) to eliminate C+(A) from the pressure
condition (20). Upon rearrangement we obtain

-iM 2  1 (A + nD+A) = UMA)-+ Mexp(iAxo - p+(A)yo)

,3 K(A) (1 + A) D+ (+(A) (24)
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where

K(A) = iM 2  (A + n)/t+(A)IL-_(A) (25)
/30M(1 ± A)2/•+(A)+ M+2/_(A) (

Equation (24) has the standard form of a Wiener-Hopf equation. It contains two unknown
functions, D+ (A) and U- (A), which are analytic in the upper and lower halves of the complex
A plane, respectively. The kernel function K(A) contains the singularities of /Z+ (A) and Ji_ (A);
the branch point of /i+ (A) at A = M+ lies in the upper half plane, while the branch point
of I+(A) at A = -M+ and the branch points of /.(A) at A = M1 and M 2 lie in the lower
half-plane (see figure 2c). The denominator of K(A) vanishes at A = -n where n is the
wavenumber of the instability wave. This zero is not a pole of K(A) because of the factor
(A + n) in the numerator. Extraction of this factor proves convenient for displaying the pole
corresponding to the instability wave. The additional factors in the definition (25) of K(A)
have been included to insure that K(A) approaches one as A --+ oo; this is advantageous for
the subsequent separation of K(A) into the product of a plus function and a minus function.

In order to apply the analytic continuation argument of the Wiener-Hopf technique, (24)
must be rearranged so that one side is analytic in the upper half-plane, while the other side
is analytic in the lower half-plane. We begin by separating K(A) into multiplicative factors

K(A) = K+-(A)K-(A)

where K+ (A) is analytic in the upper half-plane and K- (A) is analytic in the lower-half
plane. The calculation of K+ (A) and K- (A) is discussed in the Appendix. Taking K- (A) to
the left-hand side of the equation, we have

-iM 2  1 (A + n)D+(A) =U-(A)K-(A) + MK-(A)exp(iAxo - IL+(A)yo) (26)

13 K+ (A) (1 +A) L(A

It will be seen in a moment that the pole on the right-hand side of the equation at A = -1
is interpreted to lie in the lower half-plane. Thus, the left-hand side of (26) is analytic in
the upper half-plane, while the first term on the right-hand side is analytic in the lower
half-plane. However, the second term on the right-hand side is a mixed function, containing
singularities in both half-planes.

In order to complete the Wiener-Hopf separation, an additive split of the mixed function
must be performed. We set

R(A) = K- (A) 'p (iAxo - pt+(A)yo) - H+ (A) ± H- (A) (27)
jH+((A)

where the calculation of H+ (A) and H- (A) is discussed in the Appendix. Substituting (27)
and taking the term involving H+(A) to the left-hand side of (26), we obtain

-iM 2  1 (A + n) D+(A) - M+2H+(A) = U- (A)K-(A) + M2H-(A)-E(A) (28)

/3 K+(A)(1+A)

9



The left-hand side of (28) is analytic in the upper half-plane, while the right-hand side is
analytic in the lower half-plane. The two sides are equal in the strip of overlap between the
two half-planes, and therefore by analytic continuation define an entire function D(A) which
is analytic over the whole A plane.

The entire function E(A) is determined with the aid of Liouville's theorem [9], which
states that a function which is analytic in the entire plane and bounded at infinity must be
a constant. To find this constant, we examine the behavior of the minus and plus sides of
(28) as A approaches infinity in the respective half-planes. The functions K+ (A) and K- (A)
both approach one as A approaches infinity in the respective half-planes. The behavior of
U- (A) as A ---ý oo in the lower half-plane is related to the behavior of u(x) as x -- 0-, while
the behavior of D+(A) asA --+ oo in the upper half-plane is related to the behavior of d(x) as
x -ý 0+. The behaviors of u(x) and d(x) near the origin are constrained by the requirement
for acceptable behavior of the flow field in the vicinity of the trailing edge. These constraints
are called 'edge conditions' in the Wiener-Hopf literature.

In the present case, the edge conditions are determined by requiring that the solution
satisfy the unsteady Kutta condition [10]. For the familiar subsonic flow case, in the absence
of the Kutta condition the inviscid velocity field would become infinite in the vicinity of the
trailing edge; the corresponding unsteady displacement of the vortex sheet would have the
form h oc xl/2eit. With the imposition of the Kutta condition, the transverse velocities
inside and outside the jet vanish at the trailing edge, the pressure has the same value on the
upper and lower surfaces at the trailing edge, and h oc x /2 e-t.

The behavior of the flow field in the vicinity of the trailing edge is quite different for a
supersonic flow [3], [10], [11]. In this case, the flow field corresponding to the application
of an unsteady 'Kutta condition' has h oc xe-it. From (5), the corresponding transverse
velocity outside the jet has behavior v+ cx xeit, while inside the jet the transverse velocity
is discontinuous at the trailing edge; v_ --0 = 0 for x < 0, while the leading behavior for
X > 0 is v_ y--o o e-7it. Essentially, the unsteady pressure fluctuation for a supersonic jet can
have different values inside and outside the nozzle, the adjustment at the nozzle lip taking
the form of a linear expansion or compression wave, leading to a vortex sheet deflection that
is locally a linear function of x.

To apply these results to the solution of the present Wiener-Hopf problem, note that the
function u(x) is related to the pressure jump across the nozzle surface (see (12a) and (19).
The unsteady pressure difference across the nozzle surface must be finite, which implies that
u(x) -+ clas x -- 0-. It can then be shown that U-(A) oc A-'as A --* oo in the lower half-
plane. A similar argument shows that d(x) -+ c2 as x --- 0+, implying that D+(A) oc A-'
as A -- oo in the upper half-plane. The functions H+ (A) and H- (A) also approach zero as
A -- oo in the respective half-planes. Thus, both sides of (28) approach zero for large A, and
the entire function E(A) is identically zero. The plus and minus sides of )(28) can then be
set to zero separately, leading to the results

U-(A) = M+2H- (A) (29)
K-(A)

10



D+(A) = PM2(1+" + H+(A)K+(A). (30)

Then from (19) and (22) we obtain

M2 H+(A)K+(A) 1 exp(iAxo - i+(A)yo)
C+(A) = -i + (31)M!2 (A + n)t+ (A) 2 14(A) '

S(A) M2 (1 + A)H+(A)K+(A)
! ( (32)

The inverse transforms can then be evaluated, leading to

0i_ M2 H+(A)K+(A) exp(iAx- +(A)y)dA (33)
-y)= 27r M! A (+ n)p+(A)

-4g111)(M+ [(X-_ Xo)2 + (y _ y0)2]1/2)
-•H~')(+[(- Xo) 2 + (y -

4
- M X_ )2 + (y + yo) 2]1/ 2),

4
0_(X, y) =L M f- H+ (A) K+ (A)(1 + A) exp(iAx + /z-(A)y)dA. (34)

27r M!_- (A + n)#_(A)

Our main interest is in the amplitude of the instability wave component of the solution.
The instability wave component can be calculated by simply evaluating the residue contri-
bution for the pole at A = -n. Denoting the instability wave component with a subscript

(., we have

+ ý-He (-n)g (-n) xep(inx - m+y), (35)
"" 2 -n

- M+ H+(_n)g+(_n) ) exp(inx + mry), (36)

where m+ = /.+(-n) and m- = /_(-n), where n is the root of the vortex-sheet dispersion
relationship. The dimensional pressure and velocity fields for the instability wave are then

• /3M 2  1it,(7

= -ipo+wq 'a M2H+(-n)K+(-n)-1 exp(inx - m+y - it), (37)
o= q]Z -) exp(inx - m~y - it), (38)

Iwq' 2V - - f1fl'-lU4 M+ H+M (n)K+M(-n exp(inx - m +y - it), (39)

in the region outside the jet (y > 0), and the corresponding expressions inside the jet (y < 0)
are

p'v_ = Mpo-wq - 2 H (-n)g (1-n) - exp(inx + m-y - it), (40)
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u = "wqifM+- H+(-n)K" (n+ ) (1-n)n exp(inx + my - it), (41)

vj- = U M -H+(_n)K+(n)(1 n) exp(inx + my - it). (42)

It is convenient to present the result for the (complex) amplitude of the instability wave
in terms of a Receptivity Coefficient, which is a measure of the efficiency with which the
external forcing generates the instability wave. Note that the natural scaling which appears

in the expressions for the unsteady velocity field is wq/Uroughly the magnitude of the
velocity field of the point source at a distance corresponding to the natural length scale U/w
for the unsteady motion. Hence, we define the Receptivity Coefficient as

A -t/+- ly=o (43)
A wq'/U exp(-it)

where v,+[I=o is the (dimensional) y-component of velocity just outside the vortex sheet,
and q' is the (dimensional) strength of the point source. When expressed in this fashion, the

Receptivity Coefficient becomes independent of frequency. Of course, the velocity v' near the
trailing edge has hydrodynamic components in addition to the instability wave component,
so that the total velocity field satisfies the unsteady Kutta condition. Using the expression
for vi+ given above, we obtain

A = H+(-n)K+(-n). (44)

The calculation of H+(-n) and K+(-n) are discussed in the Appendix. Results for the
Receptivity Coefficient are presented in the following section.

Before proceeding to a presentation of results for the Receptivity Coefficient, we briefly

discuss differences which arise in the analysis for the other cases. For actuators on the inside
surface of the nozzle, the analysis proceeds similarly except that the forcing is present in the
region y < 0 and therefore it is g- rather than g+ that contains the particular solution. In

addition, the ease of the Wiener-Hopf splits, and also the physics of the unsteady flow in
the vicinity of the trailing edge, is intimately connected to the singularity structure in the

complex wavenumber plane. Figure 2 is an illustration of, the pole singularities and branch
cuts which arise in three different regimes of incompressible, subsonic and supersonic flow.

The case of incompressible flow is shown in figure 2a. Two branch points are present,

just above and below the origin, respectively. Also, a pair of poles occur, at A = -n
and -n*, respectively, where the (.)* denotes the complex conjugate. The pole at A =
-n corresponds to the exponentially growing instability wave while the pole at -n* is its
exponentially damped counterpart. In order to obtain a causal solution, the transform
inversion contour must pass above the pole at A -=n. The presence of only two branch
points leads to significant simplifications in the analysis, since the multiplicative split of K(A)
can be obtained analytically. Evaluation of the subsequent additive split of H(A) depends
on details of the actuator description, and in some cases can also be obtained analytically.
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The singularity structure for subsonic flow is shown in figure 2b. Here four branch points
arise, two in the upper half-plane and two in the lower. The branch points in the upper
half-plane are associated with upstream-propagating disturbances inside and outside the
stream, while the branch points in the lower half-plane are associated with the corresponding
downstream-propagating disturbances. Two alternative choices for the branch cuts in the
upper half-plane are shown in figure 2b. The vertical solid lines parallel to the imaginary
axis axe convenient for some applications, while for others it is most convenient to introduce
a horizontal branch cut (dashed line) connecting the two branch points. Again, the pole
at A = -n is associated with instability wave motion, the pole at -n* is its exponentially
damped counterpart, and the inversion contour passes above A = -n. The presence of
four branch points significantly complicates the analysis. The multiplicative split of K(A)
must be carried out by numerical integration in the complex A plane, and the subsequent
additive split of H(A) then becomes a nested double integral which much also be evaluated
numerically. However, we still have the advantage that the analytical structure of the solution
allows the instability-wave component of the unsteady motion to be extracted conveniently
and precisely, as the residue of a pole of the inverse Fourier transform. In particular, the
split function need only be evaluated at the location A = -n of the pole corresponding to
the instabilty wave motion.

The singularity structure for supersonic flow is shown in figure 2c. Here four branch points
are again present, but only one lies in the upper half plane. This change in the character of
the branch points is associated with the lack of upstream influence in a supersonic stream.
The instability wave pole at A = -n is still present, but its counterpart -n* has disappeared
into a secondary Riemann sheet. The change in the singularity structure relative to the
case of subsonic flow is reflected in a change in the character of the unsteady motion near
the trailing edge. For a subsonic flow, the flow must leave the trailing edge tangential to
the surface, corresponding to a local unsteady displacement of the vortex sheet which is
proportional to 21'2 . This result, commonly called the unsteady Kutta condition, arises
naturally from consideration of the 'edge conditions' in the Wiener-Hopf analysis. For a
supersonic flow, the difference in branch cut structure is reflected in the edge conditions in
such a way that the unsteady displacement of the vortex sheet is proportional to x. Thus, the
unsteady supersonic flow deflects at a finite angle upon reaching the trailing edge, through
alternating expansion and compression waves.

In the next section, we illustrate physical features of the shear layer receptivity process
through selected examples. All cases presented in section 4 correspond to a cold flow, T. =
T+. The quantity we focus on is the Receptivity Coefficient, a measure of the amplitude and
phase of the instability wave relative to the amplitude and phase of the actuator motion.

4 Results

First consider the case of incompressible flow. In figure 3, we present results for the shear
layer receptivity produced by a point source located at a point (x0 , YO) = ro(cos 00, sin 00),
in the quiescent fluid outside the stream. The quantity plotted is the magnitude JAI of the
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Receptivity Coefficient defined in the previous section.
In figures 3a-d, JAI is plotted as a function of actuator angular location Oo, for four

different fixed values of r0 . At r0 = 0.1, the receptivity level is almost independent of 00, as
expected. The position r0 = 17r corresponds to a distance of ¼ the instability wavelength,
and here there is a noticeable bias toward upstream positions (Oo --+ 7r). Note also the fairly
sharp rise for very small 00, where the actuator is nearly on top of the shear layer. This
rise is related to the 'direct receptivity' of the actuator on the shear layer, as opposed to
the receptivity path via the trailing edge. At r0 = 7r, corresponding to a half-wavelength
distance, the curve is starting to resemble the ro > 1 asymptotic behavior, shown as a
dashed line. The local rise as 00 --+ 0 due to the direct receptivity is still visible, but the
highest receptivity levels are associated with upstream positions (90 > 1r). At r0 = 47r,
corresponding to two instability wavelengths, the curve is quite close to its asymptotic shape
and the contribution from the direct receptivity is no longer visible.

In figures 4a-c, we illustrate the variation in IAI as the point source position is varied in
the streamwise direction, at constant yo. The strongest receptivity occurs for a position just
marginally downstream of the trailing edge. Figures 4a and 4b correspond to the same value
Yo = 0.1, but the xO scale has been expanded in figure 4b. This figure clearly illustrates
that the receptivity drops off exponentially for large positive x0 , while it only drops off
algebraically for large negative x0 . Again, we see that upstream positions are more effective
than downstream positions in exciting shear layer instability waves. Figure 4c presents the
corresponding results for Yo = 0.25. Although the transverse distance has more than doubled,
there is only a modest decrease in the maximum receptivity level.

Next we present some results for a high subsonic Mach number, M = 0.8. The Receptivity
Coefficient for an actuator on the outer surface of the splitter plate is presented in figure 5.
The magnitude IAI (figure 5a) at first drops off rather rapidly with upstream distance Ixo0, but
the fall off quickly becomes more gradual, tending toward an asymptotic Ixo -1/' behavior at
large distances. For comparison, the instability wavelength is approximately A = 4.5. Thus,
the receptivity level decreases by approximately a factor of two when the actuator is moved
one instability wavelength upstream. The reduced phase of the Receptivity Coefficient, which
accounts for the time delay in an acoustic wave propagating from the actuator to the trailing
edge, is plotted in figure 5b. The reduced phase is remarkably insensitive to the actuator
location.

In figure 6, the corresponding results are presented for the receptivity to an actuator on
the inner surface of the splitter plate in a Mach 0.8 flow. (The abscissa of the plot is reversed
relative to figure 5.) The actuator size is approximately 10 of the instability wavelength, and
generates a circular arc deflection profile with a volume displacement equal to that for the
external actuator considered in figure 5. Compared to the external actuator, the effectiveness
of the actuator on the internal surface is increased much more significantly by proximity to
the trailing edge. The reduced phase of the Receptivity Coefficient, which takes account of
the time delay for downstream propagation in the moving stream, is plotted in figure 6b.
The reduced phase has significant variations due to near-field effects in the region (-x 0 ) < 2,
but becomes relatively constant at distances farther from the trailing edge.
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Results for actuators on the outer and inner surfaces of the splitter plate for a Mach
1.5 flow are presented in figures 7 and 8. The behavior of the magnitude and phase of
the Receptivity Coefficient for an external actuator on the supersonic flow is qualitatively
similar to that for the subsonic case in figure 5. Again, a gradual monotonic decay in
the receptivity level is observed as the actuator is moved further from the trailing edge.
In contrast, the receptivity for the actuator on the internal surface in the supersonic flow
(figure 8) exhibits significant differences from the corresponding subsonic case (figure 6).
A distinctive modulation of the receptivity level occurs as the actuator location is varied
in the supersonic case. This feature is due to variations in the constructive/destructive
interference between the fast and slow supersonic waves, both of which travel downstream
in the supersonic flow. The reduced phase plotted in figure 8b accounts for the time delay
associated with the slow supersonic wave. The reduced phase in figure 8b approaches a
constant (ignoring the modulation pattern), showing that the slow wave makes the dominant
contribution to the receptivity. At higher Mach numbers, one would anticipate a more equal
balance between the influence of the slow and fast waves, leading to stronger modulation of
the pattern.

Finally, in figure 9 we present results for trailing-edge receptivity due to an incident
plane acoustic wave for the case of a supersonic flow, M = 1.5. The variation of JAI with
respect to 00 bears a resemblance to the sin 100 pattern found for low Mach numbers, but
some distortion is present. The phase of A is seen to vary significantly as a function of the
incidence angle.

5 Conclusions

A theoretical analysis has been presented for the excitation of shear layer instability waves
by actuators which produce pressure (acoustic) fields. The results show that the shear layer
is most receptive to actuators located near the trailing edge. Actuators downstream of
the trailing edge are generally less effective than actuators upstream of the trailing edge,
particularly when the distance from the trailing edge becomes of the order of or larger than
the instability wavelength. Analyses have been developed for both subsonic and supersonic
streams, and a number of interesting physical effects have been identified.

6 Appendix

The Wiener-Hopf technique requires a multiplicative factorization of the kernel function
K(A), defined by (25), into the product of two functions,

K(A) = K+(A)K-(A)

where K+ (A) and K- (A) are analytic in the upper and lower halves of the complex plane, re-
spectively. This multiplicative factorization is achieved by using the Cauchy integral formula
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to obtain an additive decomposition of the function

L(A) = ln(K(A)).

The Cauchy integral formula states

L(A) = -f~ d(

where the integral is evaluated around a closed contour that surrounds the pole at • = A and
contains no other singularities of L(C). We choose the point ( = A to lie in the strip of overlap
between the lower and upper half-planes for the Wiener-Hopf analysis, and the contour to
be a 'generalized rectangle' within this same region consisting of two long horizontal sides
that pass above and below the pole, and two short connecting vertical segments. The form
of the function K(A) was chosen so that it approaches one as A -+ ±0o in the strip. Thus,
when we deform the integration contour so that the two long horizontal segments extend
from -co to oo, the contributions from the two vertical segments vanish. We can then write

L(A) = L+(A) + L-(A)

where the plus and minus functions correspond to the contributions from the two horizontal
segments of the contour,

L+ (A) = 1 L(()d( and L-(A)= -1 L(() d(L+(r)= . (o-A -27r-- f o C- Ad

and the contours of integration for L+ (A) and L-(A) pass below and above the pole at 4 = A,
respectively. The multiplicative factorization of K(A) is then given by

K+(A) = exp(L+(A)), K-(A) = exp(L- (A)).

The procedure for calculation of the additive split of H(A) follows directly from the
Cauchy integral formula,

H( L H(+) de and H-(A) = HF () d)H+A 7r,- foo ¢-A d ad H -()=2-r F-C -A

where the contours of integration for H+ (A) and H-(A) pass below and above the pole at
= A, respectively.
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Fig. 2. An illustration of the singularities (branch points and poles) in the complex
A-plane and the transform inversion contour. (b) M < 1.
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Fig. 2. An illustration of the singularities (branch points and poles) in the complex
A-plane and the transform inversion contour:. (c) M > 1.
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Fig. 3. Magnitude IAI of the Receptivity Coefficient for a point source at the polar
location (ro, O0) outside the stream, with M = 0. Values plotted as a function of 00: (a)
ro= 0.1; (b) ro = 17r.
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Fig. 4. Magnitude IAI of the Receptivity Coefficient for a point source at the polar
location (r0 , O0) outside the stream, with M = 0. Values plotted as a function of 00: (a)
r0 = 7r; (b) ro = 47r.
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Fig. 6. Receptivity Coefficient for an actuator on the external surface (y =0+) of the
splitter plate, as a function of actuator location xO, with M = 0.8: (a) the magnitude, JAI;
(b) the reduced phase, arg [A exp (iMxo)].
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Fig. 7. Receptivity Coefficient for an actuator on the internal surface (y = 0-) of the
splitter plate, as a function of actuator location XO, with M = 0.8: (a) the magnitude, IAI;
(b) the reduced phase, arg[Aexp(iMLxo/(1 + M))].
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Fig. 8. Receptivity Coefficient for an actuator on the external surface (y 0+) of the
splitter plate, as a function of actuator location xO, with M = 1.5: (a) the magnitude, IAI;
(b) the reduced phase, arg[Aexp(iMxo)].
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Fig. 9. Receptivity Coefficient for an actuator on the internal surface (y = 0-) of the
splitter plate, as a function of actuator location xO, with M = 1.5: (a) the magnitude, IAI;
(b) the reduced phase, arg[A exp(iMLzo/(M - 1)].
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Fig. 10. Receptivity Coefficient for an acoustic plane wave incident on the trailing-edge
from the direction 0, M = 1.5: (a) the magnitude, IAI; (b) the phase, arg(A).
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